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2.4 RLC circuit: 
In this section, we consider more complex circuits, which contain both an inductor and a capacitor. 
The result is a second-order differential equation for any voltage or current of interest. Now we need 
two initial conditions to solve each differential equation.  
Such circuits occur routinely in a wide variety of applications, including oscillators and frequency 
filters. They are also very useful in modelling a number of practical situations, such as automobile 
suspension systems, temperature controllers, and even the response of an airplane to changes in 
elevator and aileron positions. 
 
2.4.1 THE SOURCE-FREE PARALLEL CIRCUIT 
When a physical capacitor is connected in parallel with an inductor and the capacitor has associated 
with it a finite resistance, the resulting network can be shown to have an equivalent circuit model like 
that shown in Fig. 2.28. 
The presence of this resistance can be used to model energy loss in the capacitor; over time, all real 
capacitors will eventually discharge, even if disconnected from a circuit. Energy losses in the 
physical inductor can also be taken into account by adding an ideal resistor (in series with the ideal 
inductor). For simplicity, however, we restrict our discussion to the case of an essentially ideal 
inductor in parallel with a “leaky” capacitor. 

 
Fig. 2.28: The source-free parallel RLC circuit. 

In the following analysis, we will assume that energy may be stored initially in both the inductor and 
the capacitor; in other words, nonzero initial values of both inductor current and capacitor voltage 
may be present. With reference to the circuit of Fig. 2.28, we may then write the single nodal 
equation 

௩

ோ
+ ∫ 𝑣 𝑑𝑡ᇱ௧

௧బ
− 𝑖(𝑡௢) + 𝐶

ௗ௩

ௗ௧
= 0  [1] 

Note that the minus sign is a consequence of the assumed direction for i. We must solve Eq. [1] 
subject to the initial conditions  

i(0+) = Io      [2] 
and 

v(0+) = Vo      [3] 
When both sides of Eq. [1] are differentiated once with respect to time, the result is the linear 
second-order homogeneous differential equation 

  𝐶
ௗమ௩

ௗ௧మ
+

ଵ

ோ

ௗ௩

ௗ௧
+

ଵ

௅
𝑣 = 0    [4] 

whose solution v(t) is the desired natural response. 
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We will assume a solution based on the exponential form. Thus, we assume 
  𝜈 = 𝐴𝑒௦௧    [5] 
Substituting Eq. [5] in Eq. [4], we obtain 

  𝐶𝐴𝑠ଶ𝑒௦௧ +
஺

ோ
𝑠𝑒௦௧ +

஺

௅
𝑒௦௧ = 0 

  𝐴𝑒௦௧ ቀ𝐶𝑠ଶ +
ଵ

ோ
𝑠 +

ଵ

௅
ቁ = 0 

  𝐶𝑠ଶ +
ଵ

ோ
𝑠 +

ଵ

௅
= 0   [6] 

  𝑠ଵ = −
ଵ

ଶோ஼
+ ටቀ

ଵ

ଶோ஼
ቁ

ଶ

−
ଵ

௅஼
  [7] 

  𝑠ଶ = −
ଵ

ଶோ
− ටቀ

ଵ

ଶோ
ቁ

ଶ

−
ଵ

௅஼
  [8] 

We thus have the general form of the natural response 
  𝜈(𝑡) = 𝐴ଵ𝑒௦భ௧ + 𝐴ଶ𝑒௦మ௧  [9] 
where s1 and s2 are given by Eqs. [7] and [8]; A1 and A2 are two arbitrary constants which are to be 
selected to satisfy the two specified initial conditions. 
The form of the natural response as given in Eq. [9] offers little insight into the nature of the curve 
we might obtain if v(t) were plotted as a function of time. 
Since the exponents, s1t and s2t must be dimensionless, s1 and s2 must have the unit of some 
dimensionless quantity “per second”. From Eqs. [7] and [8] we therefore see that the units of 1/2RC 
and 1/√LC must also be s-1 (i.e., seconds-1). Units of this type are called frequencies. 
Let us define a new term, ω0 (resonant frequency): 

  w଴ =
ଵ

√௅஼
   [10] 

On the other hand, we will call 1/2RC the neper frequency, or the exponential damping coefficient, 
and represent it by the symbol α (alpha): 

  α =
ଵ

ଶୖେ
   [11] 

This latter descriptive expression is used because α is a measure of how rapidly the natural response 
decays or damps out to its steady, final value (usually zero). Finally, s, s1, and s2, which are 
quantities that will form the basis for some of our later work, are called complex frequencies. 
Let us collect these results. The natural response of the parallel RLC circuit is 
  𝜈(𝑡) = 𝐴ଵ𝑒௦భ௧ + 𝐴ଶ𝑒௦మ௧  [9] 
Where 

  𝑠ଵ = −𝛼 + ඥ𝛼ଶ − 𝑤଴
ଶ  [12] 

  𝑠ଶ = −𝛼 − ඥ𝛼ଶ − 𝑤଴
ଶ  [13] 

We note two basic scenarios possible with Eqs. [12] and [13] depending on the relative sizes of α and 
ω0 (dictated by the values of R, L, and C). If α > ω0, s1 and s2 will both be real numbers, leading to 
what is referred to as an overdamped response. In the opposite case, where α < ω0, both s1 and s2 will 
have nonzero imaginary components, leading to what is known as an underdamped response. Both of 
these situations are considered separately in the following sections, along with the special case of α = 
ω0, which leads to what is called a critically damped response. 
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Example 2.8: Consider a parallel RLC circuit having an inductance of 10 mH and a capacitance of 
100 μF. Determine the resistor values that would lead to overdamped and underdamped responses. 
Solution: 
We first calculate the resonant frequency of the circuit: 

ω0 = 1/√LC = 103 rad/s 
An overdamped response will result if α > ω0; an underdamped response will result if α < ω0. Thus, 

1/2RC > 103 

and so 
R < 5 Ω 

leads to an overdamped response; R > 5 Ω leads to an underdamped response. 
 
2.4.2 THE OVERDAMPED PARALLEL RLC CIRCUIT 
A comparison of Eqs. [10] and [11] shows that α will be greater than ω0 if LC > 4R2C2. In this case 
the radical used in calculating s1 and s2 will be real, and both s1 and s2 will be real. Moreover, the 
following inequalities 

ටαଶ − w଴
ଶ < α 

−α − ටαଶ − w଴
ଶ < −α + ටαଶ − w଴

ଶ < 0 

may be applied to Eqs. [12] and [13] to show that both s1 and s2 are negative real numbers. 
 
The next step is to determine the arbitrary constants A1 and A2 in conformance with the initial 
conditions. We select a parallel RLC circuit with R = 6 Ω, L = 7 H, and, for ease of computation, C = 
1/42 F. The initial energy storage is specified by choosing an initial voltage across the circuit v(0) = 
0 and an initial inductor current i(0) = 10 A, where v and i are defined in Fig. 2.29. 

 
Fig. 2.29 

We may easily determine the values of the several parameters 
α = 3.5  ω0 = √6 
s1 = −1  s2 = −6   (all s−1) 

and immediately write the general form of the natural response 
𝑣(𝑡) = 𝐴ଵ𝑒ି௧ + 𝐴ଶ𝑒ି଺௧  [14] 

Only the evaluation of the two constants A1 and A2 remains. If we knew the response v(t) at two 
different values of time, these two values could be substituted in Eq. [14] and A1 and A2 easily 
found. However, we know only one instantaneous value of v(t), v(0) = 0 and, therefore, 

0 = A1 + A2    [15] 
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We can obtain a second equation relating A1 and A2 by taking the derivative of v(t) with respect to 
time in Eq. [14], determining the initial value of this derivative through the use of the remaining 
initial condition i (0) = 10, and equating the results. So, taking the derivative of both sides of Eq. 
[14], 

𝑑𝑣(𝑡)

𝑑𝑡
= −𝐴ଵ𝑒ି௧ − 6𝐴ଶ𝑒ି଺௧ 

and evaluating the derivative at t = 0, 
𝑑𝑣

𝑑𝑡
ฬ

௧ୀ଴
= −𝐴ଵ − 6𝐴ଶ 

iC = Cdv/dt 
Kirchhoff’s current law must hold at any instant in time, as it is based on conservation of electrons. 
Thus, we may write 

−iC(0) + i (0) + iR(0) = 0 
Substituting our expression for capacitor current and dividing by C, 

dv/dt|t=0 = iC(0)/C = (i (0) + iR(0))/C = i (0)/C = 420 V/s 
since zero initial voltage across the resistor requires zero initial current through it. We thus have our 
second equation, 

420 = −A1 − 6A2    [16] 
and simultaneous solution of Eqs. [15] and [16] provides the two amplitudes A1 = 84 and A2 = −84. 
Therefore, the final numerical solution for the natural response of this circuit is 

v(t) = 84(e−t − e−6t )  V   [17] 
Example 2.9: Find an expression for vC(t) valid for t > 0 in the circuit of Fig. 2.30a. 

 
Fig. 2.30 

Solution:  
After the switch is thrown, the capacitor is left in parallel with a 200 Ω resistor and a 5 mH inductor 
(Fig. 2.30b). Thus,  

α = 1/2RC = 125,000 s−1 

ω0 = 1/√(LC) = 100,000 rad/s 
s1 = −α + √(α2 – ω0

2) = −50,000 s−1  
s2 = −α − √(α2 – ω0

2) = −200,000 s−1. 
Since α > ω0, the circuit is overdamped and so we expect a capacitor voltage of the form 
  𝜈஼(𝑡) = 𝐴ଵ𝑒௦భ௧ + 𝐴ଶ𝑒௦మ௧ 
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From Fig. 2.31a, in which the inductor has been replaced with a short circuit and the capacitor with 
an open circuit, we see that 
iL (0-) = − 150/(200 + 300) = −300 mA 
and 
vC(0-) = 150*200/(200 + 300) = 60 V 

   
Fig. 2.31 

In Fig. 2.31b, we draw the circuit at t = 0+, representing the inductor current and capacitor voltage by 
ideal sources for simplicity. Since neither can change in zero time, we know that vC(0+) = 60 V. 
We have an equation for the capacitor voltage:  

vC(t) = A1e−50,000t + A2e−200,000t .  
We now know vC(0) = 60 V, but a third equation is still required. Differentiating our capacitor 
voltage equation, we find 

dvC/dt = −50,000A1e−50,000t − 200,000A2e−200,000t 
which can be related to the capacitor current as iC = C(dvC/dt). 
Returning to Fig. 1.31b, KCL yields 

iC (0+) = −iL (0+) − iR(0+) = 0.3 − [vC(0+)/200] = 0 
Application of our first initial condition yields vC(0) = A1 + A2 = 60 and application of our second 
initial condition yields 

iC(0) = −20 × 10−9(50,000A1 + 200,000A2) = 0 
Solving, A1 = 80 V and A2 = −20 V, so that 

vC(t) = 80e−50,000t − 20e−200,000t  V, t > 0 
At the very least, we can check our solution at t = 0, verifying that vC(0) = 60 V. Differentiating and 
multiplying by 20 × 10−9, we can also verify that iC(0) = 0. Also, since we have a source-free circuit 
for t > 0, we expect that vC(t) must eventually decay to zero as t approaches ∞, which our solution 
does. 
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H.W.: After being open for a long time, the switch in Fig. 2.32 closes at t = 0. Find (a) iL (0−); (b) 
vC(0−); (c) iR(0+); (d) iC(0+); (e) vC(0.2). 

 
Fig. 2.32. 

 
Graphical Representation of the Overdamped Response 
We therefore have a response curve for Eq.[17] which is zero at t = 0, is zero at t =∞, and is never 
negative; since it is not everywhere zero, it must possess at least one maximum, and this is not a 
difficult point to determine exactly. We differentiate the response 
  v(t) = 84(e−t − e−6t )  

dv/dt = 84(−e−t + 6e−6t ) 
set the derivative equal to zero to determine the time tm at which the voltage becomes maximum, 

0 = −e−tm + 6e−6tm 
manipulate once, 

e5tm = 6  and obtain  tm = 0.358 s 
and   v(tm) = 48.9 V 
A reasonable sketch of the response may be made by plotting the two exponential terms 84e−t and 
84e−6t and then taking their difference. This technique is illustrated by the curves of Fig. 2.33; the 
two exponentials are shown lightly, and their difference, the total response v(t), is drawn as a 
coloured line. The curves also verify our previous prediction that the functional behaviour of v(t) for 
very large t is 84e−t , the exponential term containing the smaller magnitude of s1 and s2. 

 
Fig.2.33. 
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Example 2.10: For t > 0, the capacitor current of a certain source-free parallel RLC circuit is given 
by iC(t) = 2e−2t − 4e−t A. Sketch the current in the range 0 < t < 5 s, and determine the settling time. 
Solution: 
We first sketch the two terms as shown in Fig. 2.34, then subtract them to find iC(t). The maximum 
value is clearly |−2| = 2 A. We therefore need to find the time at which |iC| has decreased to 20 mA, 
or 

2e−2ts − 4e−ts = −0.02  [1] 

 
Fig. 2.34 

This equation can be solved using an iterative solver routine on a scientific calculator, which returns 
the solution ts = 5.296 s. If such an option is not available, however, we can approximate Eq. [1] for t 
≥ ts as 

−4e−ts = −0.02    [2] 
Solving,  ts = −ln(0.02/4) = 5.298 s  
which is reasonably close (better than 0.1% accuracy) to the exact solution. 
 
H.W.: (a) Sketch the voltage vR(t) = 2e−t − 4e−3t V in the range 0 < t < 5 s. (b) Estimate the settling 
time. (c) Calculate the maximum positive value and the time at which it occurs. 
 
2.4.2 CRITICAL DAMPING 
Now let us adjust the element values until α and ω0 are equal. This is a very special case which is 
termed critical damping. 
Critical damping is achieved when 

  
𝛼 = 𝜔଴

𝑜𝑟  𝐿𝐶 = 4𝑅ଶ𝐶ଶ

𝐿 = 4𝑅ଶ𝐶
ൡ  Critical damping 
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We will select R, increasing its value until critical damping is obtained, and thus leave ω0 
unchanged. The necessary value of R is 7√6/2 Ω; L is still 7 H, and C remains 1/42 F. We thus find 

α = ω0 = √6 s−1 
s1 = s2 = −√6 s−1 

and recall the initial conditions that were specified, v(0) = 0 and i(0) =10 A. 
The differential equation of RLC parallel circuit is 

  𝐶
ௗమ௩

ௗ௧మ
+

ଵ

ோ

ௗ௩

ௗ௧
+

ଵ

௅
𝑣 = 0   [1] 

When α = ω0, the differential equation, Eq. [1], becomes 

  
ௗమ௩

ௗ௧మ
+ 2𝛼

ௗ௩

ௗ௧
+ 𝛼ଶ𝑣 = 0 

The solution of this equation is not a tremendously difficult process, but we will avoid developing it 
here, since the equation is a standard type found in the usual differential-equation texts. The solution 
is 

v = e−αt (A1t + A2)   [2] 
Let us now complete our numerical example. After we substitute the known value of α in Eq. [2], 
obtaining 

v = A1te−√6t + A2e−√6t 
we establish the values of A1 and A2 by first imposing the initial condition on v(t) itself, v(0) = 0. 
Thus, A2 = 0. The second initial condition must be applied to the derivative dv/dt just as in the 
overdamped case. We therefore differentiate, remembering that A2 = 0: 

dv/dt = A1t (−√6)e−√6t + A1e−√6t 
evaluate at t = 0: 

dv/dt |t=0 = A1 
and express the derivative in terms of the initial capacitor current: 

dv/dt |t=0 = iC(0)/C = (iR(0)/C) + (i(0)/C) 
A1 = 420 V 

The response is, therefore, 
v(t) = 420te−2.45t  V 

Graphical Representation of the Critically Damped Response 

 
and once again we have a response that begins and ends at zero and has positive values at all other 
times. A maximum value vm again occurs at time tm; for our example, 

tm = 0.408 s and vm = 63.1 V 
This maximum is larger than that obtained in the overdamped case, and is a result of the smaller 
losses that occur in the larger resistor; the time of the maximum response is slightly later than it was 
with overdamping. The settling time may also be determined by solving 

vm/100 = 420tse−2.45ts 
for ts (by trial-and-error methods or a calculator’s SOLVE routine): 

ts = 3.12 s 
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Fig. 2.35. 

Example 2.11: Select a value for R1 such that the circuit of Fig. 2.36 will be characterized by a 
critically damped response for t > 0, and a value for R2 such that v(0) = 2 V. 

 
Fig. 2.36 

Solution: 
We note that at t = 0−, the current source is on, and the inductor can be treated as a short circuit. 
Thus, v(0−) appears across R2, and is given by v(0−) = 5R2 and a value of 400 mΩ should be selected 
for R2 to obtain v(0) = 2 V. 
After the switch is thrown, the current source has turned itself off and R2 is shorted. We are left with 
a parallel RLC circuit comprised of R1, a 4 H inductor, and a 1nF capacitor. 
We may now calculate (for t > 0) 

α = 1/2RC = 1/2 × 10−9R1 
and 

ω0 = 1 / √LC = 1 / √4 × 10−9 = 15,810 rad/s 
Therefore, to establish a critically damped response in the circuit for t > 0, we need to set R1 = 31.63 
kΩ. 
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H.W.: (a) Choose R1 in the circuit of Fig. 2.37 so that the response after t = 0 will be critically 
damped. (b) Now select R2 to obtain v(0) = 100 V. (c) Find v(t) at t = 1 ms. 

 
Fig. 2.37. 

 
2.4.3 THE UNDERDAMPED PARALLEL RLC CIRCUIT 
 The form of the underdamped response  

𝜈(𝑡) = 𝐴ଵ𝑒௦భ௧ + 𝐴ଶ𝑒௦మ௧ 
where 

  𝑠ଵ,ଶ = −
ଵ

ଶோ
± ටቀ

ଵ

ଶோ
ቁ

ଶ

−
ଵ

௅஼
 

and then let  

ටαଶ − w଴
ଶ = √−1ටw଴

ଶ − αଶ = 𝑗ටw଴
ଶ − αଶ 

We now take the new radical, which is real for the underdamped case, and call it ωd, the natural 
resonant frequency: 

  𝑤ௗ = ඥw଴
ଶ − αଶ 

The response may now be written as 

𝜈(𝑡) = 𝑒ିఈ௧൫𝐴ଵ𝑒௝௪೏௧ + 𝐴ଶ𝑒ି௝௪೏௧൯    [1] 

or, in the longer but equivalent form, 

𝜈(𝑡) = 𝑒ିఈ௧ ቊ(𝐴ଵ + 𝐴ଶ) ቈ
𝑒௝௪೏௧ + 𝑒ି௝௪೏௧

2
቉ + 𝑗(𝐴ଵ − 𝐴ଶ) ቈ

𝑒௝௪೏௧ − 𝑒ି௝௪೏௧

2𝑗
቉ቋ 

  𝜈(𝑡) = 𝑒ିఈ௧{(𝐴ଵ + 𝐴ଶ)𝑐𝑜𝑠(𝑤ௗ𝑡) + 𝑗(𝐴ଵ − 𝐴ଶ)𝑠𝑖𝑛(𝑤ௗ𝑡)} 
and the multiplying factors may be assigned new symbols: 
  𝜈(𝑡) = 𝑒ିఈ௧{𝐵ଵ𝑐𝑜𝑠(𝑤ௗ𝑡) + 𝐵ଶ𝑠𝑖𝑛(𝑤ௗ𝑡)}  [2] 
We return to our simple parallel RLC circuit with R = 6 Ω, 
C = 1/42 F, and L = 7 H, but now increase the resistance 
further to 10.5 Ω.  
Thus, 

𝛼 =  
ଵ

ଶோ஼
 =  2          s−1 

𝜔଴  =  
1 

√𝐿𝐶
 =  √6     𝑠ିଵ 
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and 

𝑤ௗ = ටw଴
ଶ − αଶ = √2 𝑟𝑎𝑑/𝑠 

except for the evaluation of the arbitrary constants, the response is now known: 

𝜈(𝑡) = 𝑒ିଶ௧൛𝐵ଵ𝑐𝑜𝑠൫√2𝑡൯ + 𝐵ଶ𝑠𝑖𝑛൫√2𝑡൯ൟ 

The determination of the two constants proceeds as before. If we still assume that v(0) = 0 and i(0) = 
10, then B1 must be zero. Hence 

𝜈(𝑡) = 𝑒ିଶ௧𝐵ଶ𝑠𝑖𝑛൫√2𝑡൯ 

The derivative is 
𝑑𝑣

𝑑𝑡
= √2𝑒ିଶ௧𝐵ଶ𝑐𝑜𝑠൫√2𝑡൯ − 2𝑒ିଶ௧𝐵ଶ𝑠𝑖𝑛൫√2𝑡൯ 

and at t = 0 it becomes 
 
𝑑𝑣

𝑑𝑡
ฬ

௧ୀ଴
= √2𝐵ଶ =

𝑖஼(0)

𝐶
= 420 

where iC is defined in figure. Therefore, 

𝜈(𝑡) = 210√2𝑒ିଶ௧𝑠𝑖𝑛൫√2𝑡൯ 

Graphical Representation of the Underdamped Response 
Returning to our specific numerical problem, differentiation locates the first maximum of v(t), 

vm1 = 71.8 V at tm1 = 0.435 s 
The succeeding minimum, 

vm2 = −0.845 V at tm2 = 2.66 s 
and so on. The response curve is shown in Fig. 2.38.  

 
Fig. 2.38 
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Example 2.12: Determine iL(t) for the circuit of Fig. 2.39a, and plot the waveform. 

 
Fig. 2.39 

Solution: 
At t = 0, both the 3 A source and the 48 Ω resistor are removed, leaving the circuit shown in Fig. 
3.39b. Thus, α = 1.2 s−1 and ω0 = 4.899 rad/s. Since α < ω0, the circuit is underdamped, and we 
therefore expect a response of the form 

iL (t) = e−αt(B1 cosωd t + B2 sinωd t)   [1] 
where ωd = √(ω0

2 – α2 = 4.750 rad/s. The only remaining step is to find B1 and B2. 
Figure 3.39c shows the circuit as it exists at t = 0-. We may replace the inductor with a short circuit 
and the capacitor with an open circuit; the result is vC(0-) = 97.30 V and iL (0-) = 2.027 A. Since 
neither quantity can change in zero time, vC(0+) = 97.30 V and iL (0+) = 2.027 A. 
Substituting iL (0) = 2.027 into Eq. [1] yields B1 = 2.027 A. To determine the other constant, we first 
differentiate Eq. [1]: 

diL/dt = e−αt(−B1ωd sinωd t + B2ωd cosωd t) −αe−αt(B1 cosωd t + B2 sinωd t)  [2] 
and note that vL (t) = L(diL/dt). Referring to the circuit of Fig. 2.39b, we see that vL (0+) = vC(0+) = 
97.3 V. Thus, multiplying Eq. [2] by L = 10 H and setting t = 0, we find that 
vL (0) = 10(B2ωd ) − 10αB1 = 97.3 
Solving, B2 = 2.561 A, so that 

iL = e−1.2t (2.027 cos 4.75t + 2.561 sin 4.75t)   A 
which we have plotted in Fig. 2.40. 
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Fig. 2.40 

 
H.W.: The switch in the circuit of Fig. 2.41 has been in the left position for a long time; it is moved to 
the right at t = 0. Find (a) dv/dt at t = 0+; (b) v at t = 1 ms; (c) t0, the first value of t greater than 
zero at which v = 0. 

 
Fig. 2.41 
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2.4.4 THE SOURCE-FREE SERIES RLC CIRCUIT 
Figure 2.42 shows the series circuit. The fundamental integrodifferential equation is 

 
Fig. 2.42. 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + න

1

𝐶
𝑖

௧

௧బ

𝑑𝑡’ − 𝑣஼(𝑡଴) = 0 

The respective second-order equations obtained by differentiating these two equations with respect to 
time are also duals: 

𝐿
ௗమ௜

ௗ௧మ
+ 𝑅

ௗ௜

ௗ௧
+

ଵ

஼
𝑖 = 0   [1] 

In terms of the circuit shown in Fig. 2.42, the overdamped response is  
𝑖(𝑡) = 𝐴ଵ𝑒௦భ௧ + 𝐴ଵ𝑒௦భ௧ 

where 

𝑠ଵ,ଶ = −
𝑅

2𝐿
± ඨ൬

𝑅

2𝐿
൰

ଶ

−
1

𝐿𝐶
= −𝛼 ± ට𝛼ଶ − 𝜔଴

ଶ 

and thus 

𝛼 =
𝑅

2𝐿
 

𝜔଴ =
1

√𝐿𝐶
  

The form of the critically damped response is 
𝑖(𝑡) = 𝑒ିఈ௧ (𝐴ଵ𝑡 + 𝐴ଶ) 

and the underdamped response may be written 
𝑖(𝑡) = 𝑒ିఈ௧ (𝐵ଵ𝑐𝑜𝑠𝜔ௗ𝑡 + 𝐵ଶ𝑠𝑖𝑛𝜔ௗ𝑡) 

Where 𝜔ௗ = ඥ𝜔଴
ଶ − 𝛼ଶ 
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Example 2.13: Given the series RLC circuit of Fig. 2.43 in which L = 1 H, R = 2 kΩ, C = 1/401 μF, 
i(0) = 2 mA, and vC(0) = 2 V, find and sketch i(t), t > 0. 

 
Fig. 2.43 

Solution: 

We find that 𝛼 =
ோ

ଶ௅
 = 1000 s−1 and 𝜔଴ =

ଵ

√௅஼
 = 20,025 rad/s. 

This indicates an underdamped response; we therefore calculate the value of ωd and obtain 20,000 
rad/s. Except for the evaluation of the two arbitrary constants, the response is now known: 

𝑖(𝑡) = 𝑒ିଵ଴଴଴  (𝐵ଵ𝑐𝑜𝑠20000𝑡 + 𝐵ଶ𝑠𝑖𝑛20000𝑡) 
Since we know that i(0) = 2 mA, we may substitute this value into our equation for i (t) to obtain 
B1 = 0.002 A 
and thus 

𝑖(𝑡) = 𝑒ିଵ଴଴଴௧ (0.002𝑐𝑜𝑠20000𝑡 + 𝐵ଶ𝑠𝑖𝑛20000𝑡)  A 
The remaining initial condition must be applied to the derivative; thus, 

𝑑𝑖

𝑑𝑡
= 𝑒ିଵ଴଴଴  (−40𝑠𝑖𝑛20000𝑡 + 20000𝐵ଶ𝑐𝑜𝑠20000𝑡 − 2𝑐𝑜𝑠20000𝑡 − 1000𝐵ଶ𝑠𝑖𝑛20000𝑡) 

and 
𝑑𝑖

𝑑𝑡
ฬ

௧ୀ଴
=  20000𝐵ଶ − 2 =

𝑣௅(0)

𝐿
=

𝑣஼(0) − 𝑅𝑖(0)

𝐿
=

2 − 2000(0.002)

1
= −2 𝐴/𝑠 

so that B2 = 0 
The desired response is therefore 

𝑖(𝑡) = 2𝑒ିଵ଴଴଴ 𝑐𝑜𝑠20000𝑡     𝑚𝐴 
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A good sketch may be made by first drawing in the two portions of the exponential envelope, 2e−1000t 
and −2e−1000t mA, as shown by the broken lines in Fig. 2.44. The location of the quarter-cycle points 
of the sinusoidal wave at 20,000t = 0, π/2, π, etc., or t = 0.07854k ms, k = 0, 1, 2, . . ., by light marks 
on the time axis then permits the oscillatory curve to be sketched in quickly. 

 
Fig. 2.44. 

H.W.: With reference to the circuit shown in Fig. 2.45, find (a) α; (b) ω0; (c) i(0+); (d) di/dt|t=0+ ; (e) 
i (12 ms). 

 
Fig. 2.45. 

Example 2.14: Find an expression for vC(t) in the circuit of Fig. 2.46a, valid for t > 0. 

 
Fig. 2.46. 
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Solution: 
As we are interested only in vC(t), it is perfectly acceptable to begin by finding the Thévenin 
equivalent resistance connected in series with the inductor and capacitor at t = 0+. We do this by 
connecting a 1 A source as shown in Fig. 2.46b, from which we deduce that 

vtest = 11i − 3i = 8i = 8(1) = 8 V 

Thus, Req =8 Ω, so α = R/2L =0.8 s−1 and 𝜔଴ =
ଵ

√௅஼
 = 10 rad/s, meaning that we expect an 

underdamped response with ωd = 9.968 rad/s and the form 
vC(t) = e−0.8t (B1 cos 9.968t + B2 sin 9.968t)   [1] 

In considering the circuit at t = 0−, we note that iL (0−) = 0 due to the presence of the capacitor. By 
Ohm’s law, i (0−) = 5 A, so 

vC(0+) = vC(0−) = 10 − 3i = 10 − 15 = −5 V 
This last condition substituted into Eq. [1] yields B1 = −5 V. Taking the derivative of Eq. [1] and 
evaluating at t = 0 yield 

dvC/dt|t=0 = −0.8B1 + 9.968B2 = 4 + 9.968B2   [2] 
We see from Fig. 2.46a that 

i = −CdvC/dt 
Thus, making use of the fact that i (0+) = iL (0−) = 0 in Eq. [2] yields 
B2 = −0.4013 V, and we may write 

vC(t) = −e−0.8t (5 cos 9.968t + 0.4013 sin 9.968t)  V  t > 0 
 
H.W.: Find an expression for iL(t) in the circuit of Fig. 2.47, valid for t > 0, if vC(0−) = 10 V and 
iL(0−) = 0. Note that although it is not helpful to apply Thévenin techniques in this instance, the 
action of the dependent source links vC and iL such that a first-order linear differential 
equation results. 

 
Fig. 2.47. 
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2.4.5 THE COMPLETE RESPONSE OF THE RLC CIRCUIT 
We now consider those RLC circuits in which dc sources are switched into the network and produce 
forced responses that do not necessarily vanish as time becomes infinite. 
The general solution is obtained by the same procedure that was followed for RL and RC circuits. 
The basic steps are (not necessarily in this order) as follows: 
1. Determine the initial conditions. 
2. Obtain a numerical value for the forced response. 
3. Write the appropriate form of the natural response with the necessary number of arbitrary 
constants. 
4. Add the forced response and natural response to form the complete response. 
5. Evaluate the response and its derivative at t = 0, and employ the initial conditions to solve for the 
values of the unknown constants. 
Example 2.15: There are three passive elements in the circuit shown in Fig. 2.48a, and a voltage and 
a current are defined for each. Find the values of these six quantities at both t = 0− and t = 0+. 

 
Fig. 2.48. 

Solution: 
Our object is to find the value of each current and voltage at both t = 0− and t = 0+. Once these 
quantities are known, the initial values of the derivatives may be found easily. 
1. t = 0− At t = 0−, only the right-hand current source is active as depicted in Fig. 2.48b. The circuit is 
assumed to have been in this state forever, so all currents and voltages are constant. Thus, a dc 
current through the inductor requires zero voltage across it: vL (0−) = 0 
and a dc voltage across the capacitor (−vR) requires zero current through it: iC(0−) = 0 
We next apply Kirchhoff’s current law to the right-hand node to obtain: iR(0−) = −5 A 
which also yields vR(0−) = −150 V 
We may now use Kirchhoff’s voltage law around the left-hand mesh, finding: vC(0−) = 150 V 
while KCL enables us to find the inductor current, iL(0−) = 5 A 



Electric Circuits Analysis   2nd Year 

 
 

 
54 | Electrical Engineering Department/Basrah University      Dr. Mofeed Turky Rashid 
 
 

2. t = 0+ During the interval from t = 0− to t = 0+, the left-hand current source becomes active and 
many of the voltage and current values at t = 0− will change abruptly. The corresponding circuit is 
shown in Fig. 2.48c. However, we should begin by focusing our attention on those quantities which 
cannot change, namely, the inductor current and the capacitor voltage. Both of these must remain 
constant during the switching interval. Thus,  

iL(0+) = 5 A and vC(0+) = 150 V 
Since two currents are now known at the left node, we next obtain  

iR(0+) = −1 A and vR(0+) = −30 V 
so that 

iC(0+) = 4 A and vL (0+) = 120 V  
and we have our six initial values at t = 0− and six more at t = 0+. 
Among these last six values, only the capacitor voltage and the inductor current are unchanged from 
the t = 0− values. 
 
H.W.: Let is = 10u(−t) − 20u(t) A in Fig. 2.49. Find (a) iL(0−) (b) vC(0+); (c) vR(0+); (d) iL(∞); (e) 
iL(0.1 ms). 

 
Fig. 2.49. 

Example 2.16: Complete the determination of the initial conditions in the circuit of Fig. 2.51, by 
finding values at t = 0+ for the first derivatives of the three voltage and three current variables 
defined on the circuit diagram. 

 
Fig. 2.51. 

Solution: 
We begin with the two energy storage elements. For the inductor, 

𝑣௅  =  𝐿
𝑑𝑖௅

𝑑𝑡
 

and, specifically, 

𝑣௅ (0ା)  =  𝐿
𝑑𝑖௅

𝑑𝑡
ฬ

௧ୀ଴శ
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Thus, 
𝑑𝑖௅

𝑑𝑡
ฬ

௧ୀ଴శ
=

𝑣௅(0ା)

𝐿
=

120

3
= 40   𝐴/𝑠 

Similarly, 
𝑑𝑣஼

𝑑𝑡
ฬ

௧ୀ଴శ
=

𝑖஼(0ା)

𝐶
=

4

1/27
= 108   𝑉/𝑠 

The other four derivatives may be determined by realizing that KCL and KVL are both satisfied by 
the derivatives also. For example, at the left-hand node in Fig. 2.51, 

4 − iL − iR = 0   t > 0 
and thus, 

0 – diL/dt− diR/dt = 0   t > 0 
and therefore, 

𝑑𝑖ோ

𝑑𝑡
ฬ

௧ୀ଴శ
= −40   𝐴/𝑠 

The three remaining initial values of the derivatives are found to be 
𝑑𝑣ோ

𝑑𝑡
ฬ

௧ୀ଴శ
= −1200   𝑉/𝑠 

𝑑𝑣௅

𝑑𝑡
ฬ

௧ୀ଴శ
= −1092   𝑉/𝑠 

and 
𝑑𝑖஼

𝑑𝑡
ฬ

௧ୀ଴శ
= −40   𝐴/𝑠 

 
  


